Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
J Sci Food Agric ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38314878

ABSTRACT

Cacti are a distinguished group of plants that stand out for their great nutritional values, diverse uses, and unique morphology, allowing them to grow and thrive under different conditions such as dry, xeric, and even low-temperature environments. The world is going through significant climate changes that are affecting the agriculture system. Therefore, sustainable and multifunctional crops, as many species of the Cactaceae family are, might be a good alternative in the near future. In this work, the uses of cacti in human food were analyzed through a scientific prospection from the point of view of their temporal and spatial distribution and potential uses. Brazil is the country with more publications related to the scope of this work, followed by Mexico. The presence of cacti in these countries can influence their interest in these species, which might reflect the results encountered in this study. The uses and ethnobotanical applications of cacti vary in different countries worldwide. Cactus is consumed fresh (in salads), in preparations (jams and sweets), and juices, being also present in traditional dishes in countries like Mexico. This study emphasizes cacti's importance in people's diets and ongoing world changes. Their ability to thrive even in hot environments with low water resources will lead to a greater focus on these species in the upcoming years. Furthermore, these plants have great flavor and contain several beneficial chemical compounds with desirable nutritional and health properties. Therefore, knowledge dissemination combined with technological innovations will allow greater use of these multifunctional species for human consumption. © 2024 Society of Chemical Industry.

2.
Data Brief ; 51: 109673, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37876742

ABSTRACT

Toxicological analysis of the effects of natural compounds is frequently mandated to assess their safety. In addition to more simple in vitro cellular systems, more complex biological systems can be used to evaluate toxicity. This dataset is comprised of bright-field microscopy images of chicken-embryo blood cells, a complex biological model that recapitulates several features found in human organisms, including circulation in blood stream and biodistribution to different organs. In the presented collection of blood smear images, cells were exposed to the flavonoid quercetin, and the two mutagens methyl methanesulfonate (MMS) and cadmium chloride (CdCl2). In ovo models offer a unique opportunity to investigate the effects of various substances, pathogens, or cancer treatments on developing embryos, providing valuable insights into potential risks and therapeutic strategies. In toxicology, in ovo models allow for early detection of harmful compounds and their impact on embryonic development, aiding in the assessment of environmental hazards. In immunology, these models offer a controlled system to explore the developing immune responses and the interaction between pathogens and host defenses. Additionally, in ovo models are instrumental in oncology research as they enable the study of tumor development and response to therapies in a dynamic, rapidly developing environment. Thus, these versatile models play a crucial role in advancing our understanding of complex biological processes and guiding the development of safer therapeutics and interventions. The data presented here can aid in understanding the potential toxic effects of these substances on hematopoiesis and the overall health of the developing organism. Moreover, the large dataset of blood smear images can serve as a resource for training machine learning algorithms to automatically detect and classify blood cells, provided that specific optimized conditions such as image magnification and background light are maintained for comparison. This can lead to the development of automated tools for blood cell analysis, which can be useful in research. Moreover, the data is amenable to the use as teaching and learning resource for histology and developmental biology.

3.
Microbiol Res ; 277: 127490, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37722185

ABSTRACT

Pseudomonas syringae pv. actinidiae (Psa) is responsible for the kiwifruit bacterial canker, the most severe disease of Actinidia spp. The use in agriculture of antibiotics and cooper-based compounds is increasingly being restricted, demanding for new sustainable alternatives to current agrochemicals. We aimed to characterize the anti-Psa potential of essential oils (EOs) of Mentha pulegium and Satureja montana and investigate if they elicit the plant-host hormonal defenses. The EOs were characterized through gas-chromatography with flame ionization detector (GC-FID) and mass spectrometry (MS). Pulegone (78.6%) and carvacrol (43.5%) were the major constituents of M. pulegium and S. montana EO, respectively. Only S. montana EO showed relevant anti-Psa activity in vitro. To evaluate if the EOs also elicited host defenses, in vitro shoots were treated with 2 mg shoot-1 of EO-solution and subsequently inoculated with Psa three days later. Shoots were analyzed 10 min, three days (and 10 min after Psa-inoculation), four and ten days after EO application. The up/down regulation of RNA-transcripts for hormone biosynthesis, Psa biofilm production and virulence genes were quantified by real-time quantitative PCR (RT-qPCR). Phytohormones were quantified by High-Performance Liquid Chromatography (HPLC). S. montana EO showed the most promising results as a defense elicitor, increasing 6-benzylaminopurine (BAP) by 131.07% and reducing indole-3-acetic acid (IAA) levels by 49.19%. Decreases of salicylic acid (SA), and gibberellic acid 3 (GA3) levels by 32.55% and 33.09% respectively and an increase of abscisic acid (ABA) by 85.03%, in M. pulegium EO-treated shoots, revealed some protective post-infection effect. This is the most comprehensive research on the Psa's impact on phytohormones. It also unveils the protective influence of prior EO exposure, clarifying the plant hormonal response to subsequent infections. The results reinforce the hypothesis that carvacrol-rich S. montana EO can be a suitable disease control agent against Psa infection. Its dual action against pathogens and elicitation of host plant defenses make it a promising candidate for incorporation into environmentally friendly disease management approaches. Nonetheless, to fully leverage these promising results, further research is imperative to elucidate the EO mode of action and evaluate the long-term efficacy of this approach.


Subject(s)
Actinidia , Mentha pulegium , Oils, Volatile , Satureja , Oils, Volatile/pharmacology , Pseudomonas syringae , Actinidia/genetics , Actinidia/microbiology , Plant Growth Regulators/pharmacology , Montana , Plant Diseases/prevention & control , Plant Diseases/microbiology , Anti-Bacterial Agents/pharmacology
4.
Insects ; 14(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37623406

ABSTRACT

The hemodynamic activity of Melipona flavolineata workers was evaluated during restraint stress for a period of 30 min. The observed parameters were power variation in the elapsed time, and subsequently, six periods of one second were divided and called A, B, C, D, E and F; in each period, the electrocardiographic parameters were evaluated: spike frequency, amplitude, spike intervals and spike duration. The experiment was carried out with eight worker bees of M. flavolineata, for which electrodes of a nickel-chromium alloy were made. The bees were previously anesthetized with isoflurane and properly contained and fixed in a base for stereotaxis in which the electrode was implanted. All these procedures were performed inside a Faraday cage. The results showed power oscillations during the recording, with the highest energy level being between 300 and 600 s. Spike frequency, spike amplitude, interval between spikes and spike duration parameters underwent changes during the restraint stress period. Thus, the cardiac activity of M. flavolineata can be used as a biomarker and can be used to clarify physiological issues or alterations caused by toxic agents and indicate risk factors for these animals.

5.
Biotechnol Adv ; 68: 108223, 2023 11.
Article in English | MEDLINE | ID: mdl-37536466

ABSTRACT

Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.


Subject(s)
Anti-Bacterial Agents , Peptides , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Fungal Proteins , Crops, Agricultural
6.
PeerJ ; 11: e15525, 2023.
Article in English | MEDLINE | ID: mdl-37397024

ABSTRACT

Backgorund: The production of red fruits, such as blueberry, has been threatened by several stressors from severe periods of drought, nutrient scarcity, phytopathogens, and costs with fertilization programs with adverse consequences. Thus, there is an urgent need to increase this crop's resilience whilst promoting sustainable agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a solution to tackle water and nutrient deficits in soils, but also as a control against phytopathogens and as green compounds for agricultural practices. Methods: In this study, a metagenomic approach of the local fungal and bacterial community of the rhizosphere of Vaccinium corymbosum plants was performed. At the same time, both epiphytic and endophytic microorganisms were isolated in order to disclose putative beneficial native organisms. Results: Results showed a high relative abundance of Archaeorhizomyces and Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S sequencing. Diversity analysis disclosed that the fungal community presented a higher inter-sample variability than the bacterial community, and beta-diversity analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor moelleri were isolated from the V. corymbosum plants. Discussion: This work revealed a native microbial community capable of establishing mycorrhizal relationships, and with beneficial physiological traits for blueberry production. It was also possible to isolate several naturally-occurring microorganisms that are known to have plant growth-promoting activity and confer tolerance to hydric stress, a serious climate change threat. Future studies should be performed with these isolates to disclose their efficiency in conferring the needed resilience for this and several crops.


Subject(s)
Blueberry Plants , Mycorrhizae , Blueberry Plants/microbiology , Rhizosphere , Portugal , Mycorrhizae/physiology , Crops, Agricultural/microbiology , Bacteria
7.
Biology (Basel) ; 12(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37508339

ABSTRACT

Anthropogenic challenges, particularly climate change-associated factors, are strongly impacting the behavior, distribution, and survival of insects. Yet how these changes affect pests such as Drosophila suzukii, a cosmopolitan pest of soft-skinned small fruits, remains poorly understood. This polyphagous pest is chill-susceptible, with cold temperatures causing multiple stresses, including desiccation and starvation, also challenging the immune system. Since the invasion of Europe and the United States of America in 2009, it has been rapidly spreading to several European and American countries (both North and South American) and North African and Asian countries. However, globalization and global warming are allowing an altitudinal and latitudinal expansion of the species, and thus the colonization of colder regions. This review explores how D. suzukii adapts to survive during cold seasons. We focus on overwintering strategies of behavioral adaptations such as migration or sheltering, seasonal polyphenism, reproductive adaptations, as well as metabolic and transcriptomic changes in response to cold. Finally, we discuss how the continuation of climate change may promote the ability of this species to survive and spread, and what mitigation measures could be employed to overcome cold-adapted D. suzukii.

8.
Insects ; 14(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37367349

ABSTRACT

The spotted-wing drosophila (Drosophila suzukii) is a polyphagous pest that causes severe damage and economic losses to soft-skinned fruit production. Current control methods are dominated by inefficient cultural practices and broad-spectrum insecticides that, in addition to having toxic effects on non-target organisms, are becoming less effective due to acquired resistance. The increasing awareness of the real impact of insecticides on health and the environment has promoted the exploration of new insecticidal compounds, addressing novel molecular targets. This study explores the efficacy of two orally delivered spider venom peptides (SVPs), J-atracotoxin-Hv1c (Hv1c) and µ-theraphotoxin-Hhn2b (TRTX), to manage D. suzukii, through survival assays and the evaluation of gene expression associated with detoxification pathways. Treatment with TRTX at 111.5 µM for 48 h enhanced fly longevity compared with the control group. Gene expression analysis suggests that detoxification and stress-related mechanisms, such as expression of P450 proteins and apoptotic stimuli signaling, are triggered in D. suzukii flies in response to these treatments. Our results highlight the potential interest of SVPs to control this pest, shedding light on how to ultimately develop improved target-specific formulations.

9.
An Acad Bras Cienc ; 95(1): e20191295, 2023.
Article in English | MEDLINE | ID: mdl-36946799

ABSTRACT

The ground beetle, Neoaulacoryssus speciosus (Coleoptera: Carabidae) is of high relevance to field because it has been recorded as a pest of seeds and young plants of vegetables and other crops and a predator in agricultural crops, forest and weeds in Brazil. However, natural habitat changes are increasing agriculture and forest insect outbreaks in urban areas. A N. speciosus population outbreak occurred in October and November 2018 simultaneously in 12 neighboring municipalities at the beginning of the rainy season in the northern region of Minas Gerais State, Brazil. The objectives of this study were to report a sudden and simultaneous population outbreak of N. speciosus and to describe the factors of habitat change that could have contributed to this invasion in 12 municipalities in the northern region of Minas Gerais State in the Caatinga biome of Brazil. In addition, female and male genitals were described and illustrated, the scientific classification revised and common names of N. speciosus listed. Thousands of males and females of N. speciosus agglomerated in shady, humid places during the day and night for about 15 days. Neoaulacoryssus speciosus has been identified and illustrated, its scientific classification revised and four common names listed for this species.


Subject(s)
Coleoptera , Forests , Animals , Male , Female , Cities , Disease Outbreaks , Rain , Brazil/epidemiology
10.
Sci Rep ; 12(1): 21194, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476948

ABSTRACT

As a polyphagous pest, Drosophila suzukii has a variety of host fruits available for feeding and oviposition, but how the nutritional geometry of different hosts influences its metabolism is still poorly understood. This work aimed to evaluate how D. suzukii metabolic and transcriptional pathways are influenced by feeding on different host fruits, and how sex influences these responses. Adult flies were allowed to feed on five different fruit-based media. Lipids, glucose, glycogen, and energy pathways-associated gene expression, were quantified. Females showed an energetic metabolism easily adaptable to the food's nutritional characteristics; in contrast, males' energetic metabolism was particularly influenced by food, predominantly those fed on raspberry media who showed changes in glucose levels and in the expression of genes associated with metabolic pathways, suggesting activation of gluconeogenesis and trehaloneogenesis as a result of nutritional deficiency. Here we present novel insight into how D. suzukii's energetic pathways are modulated depending on fruits' nutritional geometry and sex. While the females showed high adaptability in their energetic metabolism to the diet, males were more feeding-sensitive. These findings might be used not only to control this pest population but to better advise producers to invest in less suitable fruits based on the hosts' nutritional geometry.


Subject(s)
Drosophila , Female , Animals
11.
Gigascience ; 112022 11 03.
Article in English | MEDLINE | ID: mdl-36329618

ABSTRACT

Vector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up-to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data. The publication of data papers is an effective tool for overcoming this challenge. These peer-reviewed articles provide scholarly credit for researchers whose vital work of assembling and publishing well-described, properly-formatted datasets often fails to receive appropriate recognition. To address this, GigaScience's sister journal GigaByte partnered with the Global Biodiversity Information Facility (GBIF) to publish a series of data papers, with support from the Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organisation (WHO). Here we outline the initial results of this targeted approach to sharing data and describe its importance for controlling VBDs and improving public health.


Subject(s)
Communicable Diseases , Zika Virus Infection , Zika Virus , Animals , Humans , Disease Vectors , Publishing
12.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361938

ABSTRACT

Light composition modulates plant growth and defenses, thus influencing plant-pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R-50%B (50R) and 25%R-75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses.


Subject(s)
Actinidia , Pseudomonas syringae , Actinidia/genetics , Chlorophyll A , Plant Diseases/microbiology , Virulence
13.
Int J Mol Sci ; 23(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362399

ABSTRACT

Environmental stress triggered by climate change can alter the plant's metabolite profile, which affects its physiology and performance. This is particularly important in medicinal species because their economic value depends on the richness of their phytocompounds. We aimed to characterize how water deficit modulated the medicinal species Melia azedarach's lipophilic profile and antioxidant status. Young plants were exposed to water deficit for 20 days, and lipophilic metabolite profile and the antioxidant capacity were evaluated. Leaves of M. azedarach are rich in important fatty acids and oleamide. Water deficit increased the radical scavenging capacity, total phenol, flavonoids, and catechol pools, and the accumulation of ß-sitosterol, myo-inositol, succinic acid, sucrose, d-glucose and derivatives, d-psicofuranose, d-(+)-fructofuranose, and the fatty acids stearic, α-linolenic, linoleic and palmitic acids. These responses are relevant to protecting the plant against climate change-related stress and also increase the nutritional and antioxidant quality of M. azedarach leaves.


Subject(s)
Melia azedarach , Plants, Medicinal , Melia azedarach/chemistry , Antioxidants , Water , Plant Extracts/chemistry , Phytochemicals , Plant Leaves , Fatty Acids
14.
Microbiol Spectr ; 10(6): e0207322, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36287008

ABSTRACT

Disease resistance in plants depends on a molecular dialogue with microbes that involves many known chemical effectors, but the time course of the interaction and the influence of the environment are largely unknown. The outcome of host-pathogen interactions is thought to reflect the offensive and defensive capabilities of both players. When plants interact with Pseudomonas syringae, several well-characterized virulence factors contribute to early bacterial pathogenicity, including the type III secretion system (T3SS), which must be activated by signals from the plant and environment to allow the secretion of virulence effectors. The manner in which these signals regulate T3SS activity is still unclear. Here, we strengthen the paradigm of the plant-pathogen molecular dialogue by addressing overlooked details concerning the timing of interactions, specifically the role of plant signals and temperature on the regulation of bacterial virulence during the first few hours of the interaction. Whole-genome expression profiling after 1 h revealed that the perception of plant signals from kiwifruit or tomato extracts anticipated T3SS expression in P. syringae pv. actinidiae compared to apoplast-like conditions, facilitating more efficient effector transport in planta, as revealed by the induction of a temperature-dependent hypersensitive response in the nonhost plant Arabidopsis thaliana Columbia-0 (Col-0). Our results show that in the arms race between plants and bacteria, the temperature-dependent timing of bacterial virulence versus the induction of plant defenses is probably one of the fundamental parameters governing the outcome of the interaction. IMPORTANCE Plant diseases-their occurrence and severity-result from the impact of three factors: the host, the pathogen, and the environmental conditions, interconnected in the disease triangle. Time was further included as a fourth factor accounting for plant disease, leading to a more realistic three-dimensional disease pyramid to represent the evolution of disease over time. However, this representation still considers time only as a parameter determining when and to what extent a disease will occur, at a scale from days to months. Here, we show that time is a factor regulating the arms race between plants and pathogens, at a scale from minutes to hours, and strictly depends on environmental factors. Thus, besides the arms possessed by pathogens and plants per se, the opportunity and the timing of arms mobilization make the difference in determining the outcome of an interaction and thus the occurrence of plant disease.


Subject(s)
Pseudomonas syringae , Type III Secretion Systems , Pseudomonas syringae/metabolism , Type III Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Temperature , Virulence , Plant Diseases/microbiology
15.
PeerJ ; 10: e13695, 2022.
Article in English | MEDLINE | ID: mdl-35891645

ABSTRACT

Background: Fire blight is a destructive disease of pome trees, caused by Erwinia amylovora, leading to high losses of chain-of-values fruits. Major outbreaks were registered between 2010 and 2017 in Portugal, and the first molecular epidemiological characterization of those isolates disclosed a clonal population with different levels of virulence and susceptibility to antimicrobial peptides. Methods: This work aimed to further disclose the genetic characterization and unveil the phenotypic diversity of this E. amylovora population, resorting to MLSA, growth kinetics, biochemical characterization, and antibiotic susceptibility. Results: While MLSA further confirmed the genetic clonality of those isolates, several phenotypic differences were recorded regarding their growth, carbon sources preferences, and chemical susceptibility to several antibiotics, disclosing a heterogeneous population. Principal component analysis regarding the phenotypic traits allows to separate the strains Ea 630 and Ea 680 from the remaining. Discussion: Regardless the genetic clonality of these E. amylovora strains isolated from fire blight outbreaks, the phenotypic characterization evidenced a population diversity beyond the genotype clonality inferred by MLSA and CRISPR, suggesting that distinct sources or environmental adaptations of this pathogen may have occurred. Conclusion: Attending the characteristic clonality of E. amylovora species, the data gathered here emphasizes the importance of phenotypic assessment of E. amylovora isolates to better understand their epidemiological behavior, namely by improving source tracking, make risk assessment analysis, and determine strain-specific environmental adaptations, that might ultimately lead to prevent new outbreaks.


Subject(s)
Erwinia amylovora , Erwinia amylovora/genetics , Fruit , Anti-Bacterial Agents , Virulence/genetics , Phenotype
16.
PLoS One ; 17(6): e0269343, 2022.
Article in English | MEDLINE | ID: mdl-35679321

ABSTRACT

Bacterial canker of the kiwifruit caused by the etiological agent Pseudomonas syringae pv. actinidiae is the most severe disease in kiwifruit production. Since 2008 a hypervirulent Psa biovar 3 has spread rapidly worldwide. Different genomic and phenotypic approaches have been used to understand the origin of the dissemination and geographical evolution of populations associated with this pandemic. This study aimed to characterize the genetic and phenotypic diversity of 22 Psa isolates collected in different regions of Portugal between 2013 and 2017. Genotypic and phenotypic characterization was based on Multi-Locus Sequence Analysis (MLSA), motility, IAA production, Biolog GEN III, and copper sensitivity. No polymorphisms were detected for the concatenated sequence (1950 bp) of the housekeeping genes gltA, gapA, gyrB, and rpoD. Results support the analysed Portuguese Psa isolates (2013-2017) belonging to Psa3, and MLSA indicates high genetic clonality and stability of these populations. The phenotypic analysis through Biolog revealed a heterogeneous pattern in the Psa collection and its position in the Pseudomonas complex. This heterogeneity reflects a genomic diversity that may reflect distinct adaptive trends associated with the environmental conditions and widespread. The Portuguese Psa collection showed no resistance to copper. This information is relevant to kiwi producers that predominantly use Cu-treatments to control kiwifruit bacterial canker.


Subject(s)
Actinidia , Pseudomonas syringae , Actinidia/microbiology , Copper , Fruit/microbiology , Plant Diseases/microbiology
17.
Toxics ; 10(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35622673

ABSTRACT

The unique physicochemical properties of silver nanoparticles (AgNPs) make them useful in a wide range of sectors, increasing their propensity for human exposure, as well as the need for thorough toxicological assessment. The biodistribution of silver, hematological parameters and GSH/GSSG levels in the lung and liver were studied in mice that were intratracheally instilled with AgNP (5 and 50 nm) and AgNO3 once a week for 5 weeks, followed by a recovery period of up to 28 days (dpi). Data was gathered to build a PBPK model after the entry of AgNPs into the lungs. AgNPs could be absorbed into the blood and might cross the physiological barriers and be distributed extensively in mice. Similar to AgNO3, AgNP5 induced longer-lasting toxicity toward blood cells and increased GSH levels in the lung. The exposure to AgNP50 increased the GSH from 1 dpi onward in the liver and silver was distributed to the organs after exposure, but its concentration decreased over time. In AgNP5 treated mice, silver levels were highest in the spleen, kidney, liver and blood, persisting for at least 28 days, suggesting accumulation. The major route for excretion seemed to be through the urine, despite a high concentration of AgNP5 also being found in feces. The modeled silver concentration was in line with the in vivo data for the heart and liver.

18.
PLoS One ; 17(5): e0267648, 2022.
Article in English | MEDLINE | ID: mdl-35512031

ABSTRACT

Inflammatory mammary carcinoma (IMC), a neoplasia affecting women and female dogs, is considered an aggressive cancer with high metastatic potential and a low survival rate. Studies focused on the tumour microenvironment indicate that the aggressive behaviour of this tumour is primarily correlated with immunological factors as well as inflammation. The objective of this study was to analyse the possible strategies used by the tumour cells to suppress the immune response in female dogs with IMC. Forty-six female dogs were divided into three groups: control (C, n = 10), IMC (n = 14) and mammary carcinoma (MC, n = 22). Clinical-pathological evaluations, survival at follow-up, immunophenotyping of leukocytes in peripheral blood and tumours, and immunohistochemical evaluation of CD4+, granzyme B, perforin and FAS-L were performed. Clinical and pathological results showed a higher frequency of the primary form of neoplasia, solid arrays of tumor cells and a lower survival rate in the IMC group (30 days). Morphometric analysis of inflammatory infiltrate revealed more lymphocytes and macrophages in the IMC group. Immunophenotyping analysis of peripheral blood revealed a higher frequency of CD8+ T-cells (p = 0.0017), a lower frequency of CD4+ T-cells (p <0.0001), and significantly higher mean MHCI and MHCII CD14+ fluorescence intensity in the IMC group (p = 0.038 and p = 0.0117, respectively). The immunohistochemical evaluation of tumour sections showed fewer FAS-L-positive inflammatory cells in the IMC group. These results suggest the important contribution of CD8+ T-cells, macrophages and FAS-L in the aggressiveness of IMC.


Subject(s)
Carcinoma , Dog Diseases , Inflammatory Breast Neoplasms , Mammary Neoplasms, Animal , Animals , Carcinoma/pathology , Dog Diseases/pathology , Dogs , Female , Humans , Immunity , Mammary Neoplasms, Animal/pathology , Tumor Microenvironment
19.
Microbiol Res ; 260: 127048, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35525168

ABSTRACT

Plant-associated bacteria, including pathogens, recognise host-derived signals to activate specific responses. The genome of Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of bacterial canker of kiwifruit, encodes for three putative LuxR-like receptors. Proteins of this family are usually involved in the quorum sensing system, through the perception of autoinducers (AHLs) produced by a cognate LuxI. However, Psa does not produce AHLs according to the lack of LuxI-encoding gene. It has been proposed that the so-called LuxR solos may be involved in the perception of environmental stimuli. We thus hypothesised that Psa LuxR-like receptors could be involved in host-derived signal sensing. Psa virulence traits, i.e., biofilm formation, motility and endophytic colonisation, were stimulated by growing the pathogen in host plant extracts, but not in non-host plant extracts or rich medium. Moreover, the phenotypic analyses of Psa mutant strains lacking the LuxR solo-encoding genes, demonstrated that PsaR2 plays a major role in host recognition and induction of virulence responses. The heterologous expression of PsaR2, followed by affinity chromatography and fraction activity assessment, confirmed the specific recognition of plant-derived components by this sensor. Overall, these data provide a deeper understanding of the regulation of Psa virulence through interkingdom communication, which represents a interesting target for the development of tolerant/resistant genotypes or innovative control strategies.


Subject(s)
Pseudomonas syringae , Plant Diseases/microbiology , Plant Extracts , Pseudomonas syringae/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Virulence/genetics
20.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35326127

ABSTRACT

Currently, salinity and heat are two critical threats to crop production and food security which are being aggravated by the global climatic instability. In this scenario, it is imperative to understand plant responses to simultaneous exposure to different stressors and the cross-talk between underlying functional mechanisms. Thus, in this study, the physiological and biochemical responses of tomato plants (Solanum lycopersicum L.) to the combination of salinity (100 mM NaCl) and heat (42 °C; 4 h/day) stress were evaluated. After 21 days of co-exposure, the accumulation of Na+ in plant tissues was superior when salt-treated plants were also exposed to high temperatures compared to the individual saline treatment, leading to the depletion of other nutrients and a harsher negative effect on plant growth. Despite that, neither oxidative damage nor a major accumulation of reactive oxygen species took place under stress conditions, mostly due to the accumulation of antioxidant (AOX) metabolites alongside the activation of several AOX enzymes. Nonetheless, the plausible allocation of resources towards the defense pathways related to oxidative and osmotic stress, along with severe Na toxicity, heavily compromised the ability of plants to grow properly when the combination of salinity and heat was imposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...